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Outline

An brief schedule for this tutorial is as follows:

Tuesday Introduction to metrics and regularization: basic concepts and connection
to statistical modeling

Wednesday Metrics: examples, data fidelity terms, warping, and face recognition

Thursday Regularization: examples, denoising and total variation based methods,
and geometric analysis

Disclaimer: this tutorial is not an unbiased review of metrics and regularization for
image analysis. I present my own views and perspectives while at the same time
presenting a range of ideas, many of which are important for the work of our team
at LANL.

Acknowledgements: Members of the DDMA team at Los Alamos and connected
academic departments – UCLA, Duke, Courant, Georgetown, Rice and Clarkson as
well as visitors to the DDMA team at Los Alamos.



Information extraction from image comparisons

Find a particular person:



Metrics

Metrics should measure what matters, ignore what doesn’t

Example 2 of class 1

Example 1 of class 2

Example 1 of class 1
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The “viewgraph” norm or metric

Standard practice: the “viewgraph” norm – how similar are two images to the
human eye.

Difficulties with this: Which human? Why should what we notice be important?
How do you quantify the degree to which things are different? How much are
biases helping or hurting the determination?

Forcing the difference measure to be formulated concretely allows biases to be
examined and varied or modified.



Regularization

Image analysis problems are inverse problems ⇒ regularization is needed

Inpainting: fill in missing pieces of images.

Denoising: reverse the degradation due to noise.

Segmentation: find the objects and their boundaries in an image.

Detection: find persons, houses, and stars.

Recognition: find a particular person or house or star.

Since it is almost always the case that many “true” images could give rise to
the degraded, noisy measured image, we need to pick a solution from the many
candidates.

Regularization helps us pick a solution



Example: L2TV functional for denoising

An example functional we will examine more carefully on Thursday is the ROF or
L2TV functional which is minimized to obtain denoised reconstructions of degraded
images:

min
u

F (u) =
∫
|∇u|dx + λ

∫
|d− u|2dx (1)

Metric:
∫
|d− u|2dx

Regularization:
∫
|∇u|dx

What about λ?: Lagrange multiplier, a balance between the regularization and
the fidelity of the solution to the measured data. (Has important geometric
implications as we will see on Thursday).



Example: L2TV functional for denoising

Here is an example with a slight twist:

min
u

F (u) =
∫
|∇u|dx + λ

∫
|Pu− d|2dx (2)

where the P is the measurement operator (Abel projection).



Metrics: from a variety of sources

The term metric has at least two uses: one mathematical and rigorous and another
use that is more suggestive than precise.

Let’s represent images by u, v, w ∈ U .

Precise: A function ρ(u, v) such that

1 ρ(u, v) ≥ 0 with equality if and only if u = v,

2 ρ(u, v) = ρ(v, u), and

3 ρ(u, v) ≤ ρ(u, w) + ρ(w, v) for all u, v, w ∈ U

Suggestive: f(u, v) such that (usually) f(u, v) > 0 if u 6= v and there is a sense
that f(u, v) measures similarity between u and v. (Notice the the ambiguity.)
We do not require (or necessarily have) symmetry and/or the triangle inequality.



Metrics: mathematically speaking

Examples of metrics in the mathematical sense:

1 x and y in Rn: ρ(x, y) = ||x−y||p = ((x1 − y1)p + (x2 − y2)p + ... + (x2 − y2)p)
1
p.

Common choices for p = 1,2 and ∞.

2 f and g functions from Rn to R:
(∫
|f − g|pdx

)1
p

3 x and y points on a manifold M : ρ(x, y) ≡ distance of shortest path from x to
y that lies on the manifold. To be more precise, we need a Riemannian metric
field that we can integrate to get geodesics (≡ shortest paths).

4 Sobolev norms: example, ||f − g||H1 ≡
(
||f − g||22 + ||∇f −∇g||22

)1
2

Examples of metrics in the suggestive sense:

1 f, g probability densities: relative entropy, not symmetric, no triangle inequality.

2 f, g functions: TV seminorm
∫
|∇f −∇g|dx, 0 6→ equality.

3 f, g ∈ F functions: choose some h : F → R. Now consider the “metric”
obtained by |h(f)− h(g)|. Common scientific data approach.

We will look at metrics for image comparisons in much more detail tomorrow.



What is regularization?

I will answer using an example:

Suppose a measured image d is equal to some true image u corrupted by noise η,
d = u + η and η is Gaussian: η ∼ C exp(−ηt · η/2σ2).

Task: use d and knowledge of the noise level σ to recover u.

Any point in U on S(d, σ), the sphere centered at d of radius σ, is a
perfectly good “reconstruction”.
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What is regularization?

But we always know more: the solution is smooth or continuous or has no high
frequency components or is piecewise polynomial, etc. Suppose we can quantify
this: the smaller R(u) is, the more regular u is. Level sets of R (frequently) pick a
unique best u.
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u

R(u) = 1

R(u) = 2

We invert by balancing fidelity to the data, measured by ρ(u, d), against solution
regularity , measured by a regularization term R(u).

minu F (u) ≡ R(u) + λρ(u, d) = (for example)
∫
|∇u|dx + λ

∫
|u− d|2dx.



What is regularization?

Another example: regularized tomographic inversions. Linear subspaces of solutions
match the measured data.

min
u

F (u) =
∫
|∇u|dx + λ

∫
|Pu− d|2dx (3)

Regularization chooses u ∈ N + u∗, where N ≡ {u : Pu = 0} is the subspace of
null solutions and u∗ is any solution to Pu = d.

Above we regularize be minimizing some energy R(u). We can also regularize by
restriction to some lower dimensional subset or submanifold

Example: choosing images restricted to the subset of binary images.

(More details in Asaki’s talk later.)



Regularization: a look ahead

We have seen the L2TV or ROF functional above, an older one seems very similar
at first sight:

min
u

F (u) =
∫
|∇u|2dx + λ

∫
|d− u|2dx (4)

In this case |∇u|2 replaces |∇u|1 in the regularization term – and we lose edges:
see Asaki’s talk latter this afternoon.



Regularization and Metrics: probabilistic connection

The last example suggests a connection between priors and regularization.

p(u|f) ∼ p(f |u)p(u)

arg max
u

p(u|f) = arg max
u

p(f |u)p(u)

arg min
u
{− log(p(u|f))} = arg min

u
{− log(p(f |u))− log(p(u))}

Supposing that (for example) p(f |u) ∼ e−
R

λ|u−f |2dx and p(u) ∼ e−
R
|∇u|dx, we

get:

arg min
u

{∫
|∇u|dx + λ

∫
|u− f |2dx

}
.

More generally, with p(f |u) ∼ e−λρ(u,f) and p(u) ∼ e−E(u,∇u), we get:

arg min
u
{E(u,∇u) + λρ(u, f)} .



Regularization and Metrics: probabilistic connection

Regularization can be viewed as

Method of stabilizing inverse problems: simplest point of view. But we
understand why this is reasonable by seeing regularization as

Enforcement of prior: choosing the solution that best fits what we know about
the solution;

Dimension reduction: reducing the dimension of the object we are trying to infer
or estimate from the data;

It should now be clear that while regularization can be viewed as a
stabilization procedure for inverse problems, it is justified by the fact
that this is how we can insert prior information into the solution.



Mathematical background

For the rest of this talk, I will introduce mathematical concepts important to the
topics of this tutorial.

Some of these concepts will be used only rather lightly in the tutorial, but are
very useful for understanding the topics we will discuss and will, for example, be
assumed of readers of research papers in this area.

Perspective: I am (unapologetically) highly biased towards things geometric and
geometric-analytic, so I try to “see” what motivates and leads us towards solutions
and understanding. I will attempt now to pass to you a few of these intuitive tools.

References: I recommend Evans’ PDE text, Evans’ and Gariepy’s monograph,
Mattila’s book on sets and measures, Folland’s graduate analysis text as well as
Ekeland and Temam, Zeidler’s books, and Dacorogna’s new text “Introduction to
the Calculus of Variations”.



Mathematical background

Properties of minimizers

So: you concoct a functional the incorporates measured data and a prior model
and end up with minu F (u) ≡ R(u) + ρ(d, u): what now?

Mathematicians can’t help themselves: they must ask (no matter how silly this
seems to some physicists)

E “Is there a minimizer” (existence)

U “How many minimizers” (uniqueness)

R “How nice is the minimizer(s)” (regularity)

and if that mathematician has an “applied” bent,

C “Can I construct a convergent algorithm to find the minimizer”(computation)

S “How stable is my solution to perturbations of the data?”(stability*)

G “Can I characterize exact solution properties in terms of useful solution
properties?” (geometry)



Mathematical background

Looking for minimizers: one-dimensional examples
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Mathematical background

Looking for minimizers: existence

The direct method of the calculus of variations:

Bounded Below: f is bounded below; f∗ ≡ infu f(u)
f Coercive: L(a0) ≡ {u|f(u) ≤ a0} bounded for some a0 > f∗

f lower semicontinuous: L(a) ≡ {u|f(u) ≤ a} is closed for all a0 ≥ a > f∗.

f has a minimizer: here is a proof.

* L(a0) ⊃ L(a1) ⊃ L(a2) ⊃ . . . is a nested sequence of compact sets.

* L(f∗) =
⋂

i L(ai) 6= ∅.
* QED

f has a minimizer: another (equivalent proof).

* minimizing sequence exists; f(ui) → f∗

* the level set L(a0) is compact

* ⇒ u∗ ≡ limk uik; a subsequence converges.

* f(u∗) ≤ lim infk f(uik) = f∗; from lower semicontinuity

* f(u∗) = f∗ ⇒ u∗ is a minimizer



Mathematical background

Caution: important issue glossed over – compactness is non-trivial
infinite dimensional spaces (e.g. function spaces).

Finite Dimensions: compact = closed and bounded.

Infinite dimensions: closed unit ball not compact.

Weak topologies: Changing to weak topologies can give us compactness ...
interesting details here.

Fix: Typically, the existence proofs above will use weak convergence and
compactness.

Weak convergence: define Fg(f) ≡
∫

fgdx

fi ⇀ f∗ if Fg(fi) → Fg(f∗) (5)

for all g in some set or space (details here!).



Mathematical background

Looking for minimizers: convexity and uniqueness
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Mathematical background

How nice is the minimizer? characterization and image representation

Note: not unreasonably, how nice a solution is usually referred to as solution
regularity. This is related to but not completely identical with the regularization
that we have discussed today and is treated at length on Thursday.

Nice makes sense only for high dimensional u; for u that are functions or discretized
functions.

* How smooth is the minimizer?

* Do the level sets have bounded curvature?

* Is the minimizer really just a sensibly denoised version of the original data?

* Is the minimizer equal to the true image?

* What artifacts has the regularization introduced into the minimizer?

* Can we find or construct exact, non-trivial data-minimizer pairs?

In short, we want to know how nice minimizers are and be able to characterize
them as closely as possible. Now a picture of function spaces ...



Mathematical background

L1(Ω)∗∗

L1(Ω)

BV (Ω)

W 1,1

C∞
c (Ω)

C(Ω)



Mathematical background

Flowing towards minimizers: derivatives and Euler-Lagrange equations

A first approach to finding minimizers is often essentially undergraduate calculus:
we descend the gradient.

ut = −DF (u). (6)

To do this we need to understand DF(u) when u ∈ U , an infinite dimensional
space. (There are details we gloss over: e.g. when is DF (u) ∈ U?)

So, what does DF (u) mean? Answer: exactly what you expect!

* Derivatives are simply local linear approximations.

* F (u + δ) = F (u) + DF (u)(δ) + o(|δ|).
* Next page: we calculate DF for F (u) =

∫
|∇u|2dx + λ

∫
|d− u|2dx

Note: Convexity (when we have it) means the gradient is reliable (though possibly
very slow) and leads to a global minimizer.



Mathematical background

Calculate DF (u)δ ≈ F (u + δ)− F (u) for F (u) =
∫
|∇u|2 + λ

∫
|u− d|2:

F (u + δ) =
∫
∇u · ∇u + 2∇u · ∇δ +∇δ · ∇δ + λ

∫
u2 + d2 + δ2− 2ud + 2uδ− 2δd

F (u) =
∫
∇u · ∇u + λ

∫
u2 + d2 − 2ud

subtracting:

F (u + δ)− F (u) =
∫

2∇u · ∇δ +∇δ · ∇δ + λ
∫

2uδ − 2dδ + δ2

Ignoring second order terms (we assume that δ and ∇δ are “very small”) we get:

F (u + δ)− F (u) =
∫

2∇u · ∇δ + λ
∫

2uδ − 2dδ

Integrating the first term by parts and combining we get:

F (u + δ)− F (u) =
∫

2 (−∇ · ∇u + λ2(u− d)) δ.

SO: DF (u)δ =
∫

2 (−∆u + λ2(u− d)) δ =< 2 (−∆u + λ2(u− d)), δ >



Mathematical background

Representing Images: functions, sets and measures

Radon Measures: are nice measures, include well behaved singular measures.
Examples: point masses (Dirac delta “functions”) and other measures
concentrated on lower dimensional subsets of the plane.

BV functions: a natural choice for image representation

* f ∈ BV (Ω) if f ∈ L1(Ω) and
∫
∇f · ~φdx =

∫
~φ · dν where ν is a vector

valued Radon measure with finite mass.

* f ∈ BV (Ω) may have discontinuities!

* we can do analysis with BV functions.

Multiscale representations: Examples abound from previous lectures. I will briefly
mention another tomorrow.

Currents and varifolds: currents (think of them as generalized manifolds) have
the advantage of allowing wild behavior to be handled with “ease” analytically.
Their disadvantage is that this branch of geometric measure theory takes some
concentration to master. (example: Federer’s tome.) There are close connections
to BV functions.



Mathematical background

Level sets: can be used to do very nice things with sets of codimension k where k
is a very small integer like 1. Huge amount of work here. Very interesting from
every angle (theoretical, computational, usefulness for applications).

Radon Measures:

Define: µf(A) ≡
∫

A
fdx for any positive f in L1. Then: fdx = dµf

What if we generalize allowable f ’s? Answer: Radon measures happen. (catch: we
only know how to generalize µ)

BV functions:

Typical gradient fields: ~dF (x) = ~σ(x)f(x), ~σ(x) a unit vector field, f(x) the

magnitude | ~dF (x)|.

Define the gradient measure µdF (A) ≡
∫

A
~σ(x)f(x)dx.

A BV function is one whose gradient measure can be written
∫

A
~σ(x)dµ where µ

is a Radon measure.



Mathematical background

Geometric structure: Derivatives are local linear approximations

F : u ∈ Rn → R: zoom into a function whose derivative is not identically 0. It
looks like a tipped plane.

F : u ∈ Rn → Rm: zoom into a function with full rank derivative. The derivative
tells us everything.

Technicalities for infinite dimensions: Even linear maps become nontrivial(!) in
infinite dimensional spaces, but you can get a very long ways by leveraging a solid
understanding of the case F : Rn → Rm and the corresponding DF .

What can local linear approximations tell us?

Inverse function theorem: if DF is invertible, then locally, so is F .

Implicit function theorem: if DF has a null space of dimension k, then F has
level sets of dimension k.

Transverse intersections: dim(A ∩B) = dim A + dim B − dim W,A&B ⊂ W



Mathematical background
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What do we need higher order approximations for? Answer: understanding
singularities.

Example: second order variations at singularities of the derivative can tell us a
great deal. We will see an example Thursday in the derivations of non-trivial, exact
minimizers.



Mathematical background

The Lagrange Multiplier Picture

Problem Maximize f(x) subject to g(x) = c.

Multiplier method Find stationary points of L(x, λ) ≡ f(x) + λg(x)

Do ... solve DL(x, λ) = Df(x) + λDg(x) = 0

X*

Gradient of  f

Gradient of g

g = 0

f = 0

f = 1

f = 2



Tomorrow: Metrics

1 Brief review

2 Examples of metrics

3 Warping metrics

4 Metrics that ignore unimportant differences: Classification mod Invariance
(CMODI)

5 New directions

See you tomorrow!



Outline for Wednesday

Metrics: examples, data fidelity terms, warping, and
face recognition
1 Brief review from yesterday

2 Examples of metrics

3 Warping metrics

4 Metrics that ignore unimportant differences: Classification mod Invariance
(CMODI).

5 New directions

Central motivation: principled comparisons of image data that measure what is
important.

Starting point: viewgraph “norm”, very little development of metrics which
incorporate domain knowledge.

Philosophy: think about what we would like to do ideally, use this to inform
whatever approximations of this ideal get implemented.



Metrics: data fidelity, likelihood, and image comparisons

Recall: metrics enter into variational image analysis methods as data fidelity terms
with a connection to maximum likelihood estimation.

Example:

min
u

F (u) =
∫
|∇u|dx + λ

∫
|d− u|2dx (7)

This data fidelity can be viewed as the negative log-likelihood of the Gaussian
likelihood of data d given truth (or model) u.

Data fidelity terms with “projection” operators – ||Pu− d||.

min
u

F (u) =
∫
|∇u|dx + λ

∫
|Pu− d|2dx (8)

There is often a significant null or effective null space associated with P . Typically,
the measurements alone are not enough to infer the value u should have – P−1(u),
even when it exists, is not what we want to compute.



Metrics: data fidelity, likelihood, and image comparisons

Image comparisons for scientific purposes require metrics implicitly “knowing”
which differences are important and which are not.

What is important depends on how the data is being used:

Validation Complex simulation codes predict a few scalar quantities. Then if we
predict y ∈ R3 using states in R1000000 then there will be a codimension 3
(= 999, 997 dimensional) submanifold ALL mapping to the same output.

Recognition Rotation, scaling, translation, lighting changes all produce different
images given a fixed subject. These sets of images produced highly curved
submanifolds that we want the metrics to effectively factor out.

Generally Even in cases in which there are no null directions, there should be a
ranking in the importance of different perturbations → weighted metrics.



Example: L2

The L2 metric (norm) has lots of nice properties.

In the ROF example we use the L2 norm squared:

min
u

F (u) =
∫
|∇u|dx + λ

∫
|d− u|2dx︸ ︷︷ ︸

(L2)2

(9)

Properties:

This norm gives us a Hilbert space: which is the nicest kind of normed vector
space.

Our intuition works: due to the fact that we have an inner product.

Derivative of (L2)2 is simple: leading to nice derivations

(L2)2 is strictly convex: leading to unique solutions.

(L2)2 can be seen as motivated by Gaussian perturbations: what most are
comfortable assuming (even when they shouldn’t be!)



Example: L1

Using an L1 data fidelity leads to very interesting geometric properties: we will
discuss this in detail tomorrow.

min
u

F (u) =
∫
|∇u|dx + λ

∫
|d− u|1dx (10)

Properties:

This norm is more robust to outliers than (L2)2: This has practical advantages
as we have seen from Asaki’s talk.

L1 is not strictly convex: we can (and do ) get nonuniqueness.

L1 is a boundary case in the 1 ≤ p ≤ ∞ continuum: interesting things often
happen at boundaries.

There is no inner product giving rise to L1: and correspondingly, intuition for
this space is not immediate.



Examples: L∞

What about p = ∞, the other boundary case for the Lp norms?

min
u

F (u) =
∫
|∇u|dx + λ sup

x
|u− d|? (11)

Not robust to outliers: recall Peter Jones’ β numbers and the reasons for
considering the L2 versions that were studied carefully in Gilad Lerman’s
dissertation.

Derivatives are difficult: in fact they are singular and require regularization for
computation purposes. (If u ≥ 0, u is continuous, u∗ = supu and A ≡
{x|u(x) = u∗} then the directional derivative in the direction of v is supA v(x).)

There are interesting connections: tomorrow we will briefly touch on the case
where we use take the L∞ norm of the gradient term (regularization). This
leads to very interesting work on absolutely minimizing functions.

Actually: , in the case of binary images, the above equation can be solved by
inspection → exercise)!



Examples: Poisson

New work: since it is not unreasonable that noise could be Poisson since many
measurements are based on counting the data fidelity term derived by taking the
negative log-likelihood can be considered.

min
u

F (u) =
∫
|∇u|dx + λ

∫
(u− f log u)dx (12)

Poisson distribution: p(k) = e−µµk

k! ; mean and variance are both equal to µ

CCD cameras and scintillators: are measuring particle counts. Therefore,
Poisson statistics are appropriate.



Examples: relative entropy

an interesting and very useful non-metric distance is the relative entropy distance
also known as the Kulback-Liebler distance. In particular, this distance dominates
information theory. A beautiful reference for those interested in more details is the
text by Thomas and Cover.

Definition: Given two pdf’s ρ1(x) and ρ2(x) D(ρ1||ρ2) ≡
∑

x ρ1(x) log(ρ1(x)
ρ2(x)).

Not Symmetric: Generally, D(ρ1||ρ2) 6= D(ρ2||ρ1).
Triangle inequality: not satisfied!

Large deviation theory: The theory of types (see chapter 12 of Cover and
Thomas)exploits relative entropy to obtain results on large deviations.

Opinion: Information theory still has much to offer image analysis – a good place
to start would be with relative entropy distances between image derived pdf’s.



Examples: Meyer’s suggestion

Y. Meyer suggested that to better separate the cartoon and texture components of
an image the following function be used:

min
u

F (u) =
∫
|∇u|dx + λ||d− u||∗ (13)

where ||w||∗ is given by

||w||∗ = inf
g1,g2∈A

sup
x

(g2
1(x) + g2

2(x))
1
2 (14)

for A ≡ (g1, g2) such that g1, g2 ∈ L∞ and w = ∇ · (g1, g2).

The set of all generalized functions that can be written w = ∇ · (g1, g2) with
g1, g2 ∈ L∞ is a Banach space with the norm || · ||∗ given above and is in some
sense the dual space of BV.

Reference: Y. Meyer’s monograph, “Oscillating Patterns in Image Processing and
Nonlinear Evolution Equations”, AMS 2002



Examples: Vese and Osher’s implementation

Vese and Osher implemented a version of Meyer’s suggestion of using something
close to the dual space of BV for the data fidelity and obtained:

inf
u, ~G

F (u, ~G) =
∫
|∇u|dx + λ

∫
|f − u−∇ · ~G|2dx + γ||

√
~G · ~G||p (15)

where ~G = (g1, g2) and g1, g2 ∈ L∞.

The parameters λ and γ control the balance between terms. The idea is to let
p →∞. In practice p ≈ 1 works quite well.

Advantages: over a strictly faithful implementation of Meyer’s ideas are the fact
that you can actually compute this functional and minimize it.

New work: continues to improve the cartoon texture separation

Results: show an improvement in the cartoon-texture separation ... results from
the Vese-Osher paper are shown on the next slide.



Examples: Vese and Osher’s implementation

original thumb print

ROF separation

Vese-Osher Separation



Examples: Warping metrics

In a bit we will look in more detail at a couple of warping metrics. Here I simply
list a few of the methods that have been proposed.

Miller’s Computational Anatomy: In this approach two images are connected
by paths in image space whose length is calculated by integrating the Sobolev
norm of the increments along the path. Then the minimal length path is found
(geodesic). This length is defined to be the distance between the images.

Monge-Kantorovich Warping: The classic Monge Optimal transport problem
looks for the cheapest way to move a pile of dirt in one spot to a hole with the
same volume in another spot. Essentially we can view any two images (after
normalization) as mass distributions. The optimal transport of one to another is
the MK warping distance. We will say more about this today.

Curvature Warping: Here we warp the domain around and penalize for curvature
by having having something like |κ|2 (where κ is the curvature) in the cost
functional. The cost of the cheapest warp between two images is then the
distance between the two images.

Elastic Warping: Same as curvature warping except we use elastic energies to
construct the cost function.



Example: invariant recognition metrics

The idea of constructing metrics which ignore differences between objects or images
which are in the same orbit of some group or set of transformations is certainly not
new.

Difficulty: This is computationally very difficult for those problems for which it
cannot be done analytically.

The Idea is compelling: It is the right thing to do. Find “all” the invariant
manifolds or sets using a “large” amount of data and methods that Laurence
Saul talked about and then construct a quotient map. Given new data, use
the quotient map to project the new data on the quotient space. Invariant
recognition is then easy.

Practically: You must do some sequence of approximations and hacks.

One example is examined below: What we call classification mod invariance
(CMODI) was constructed to factor our invariances for which we know the
infinitesimal generators (the tangent space.

We now look at warping and CMODI – tomorrow we will look at L1 and L2 metrics
in conjunction with TV regularization.



Why Warp?

Typical metrics are norms of differences, ρ(u, f) = ||u − f ||. This can have
undesirable effects.

We want metrics which in effect split differences nonlinearly and weight the factors
differently.



Why Warp?

Idea: Warp domain to match image u and f . Use a natural stochastic term
log(pn()) to measure remaining difference.

ρ(u(x), f) = E(ω)− α log(pn(f |u(ω(x)))

α n

ω(  )xu(       )

ω(  ) x ω(  )xu(       )

.
..

..
..

. ..

. .
.

.......

.
...

.

.

.

...
.

.

.

.

.

..

.
....

.
.
..

.

.
..

.
..

.
.
.

.

. .
.
.
...

..

.

...... .....
.

..

.

. .
.

..
.

f

ω

u(x)

(on green comparison region)

u , fρ(        )   =   E(       ) _       log(p(f |             ))



Quotients: Metrics that ignore unimportant differences.

Example 2 of class 1

Example 1 of class 2

Example 1 of class 1

k

N−k N

Invariant leaves    R∼

  R            R    mod {invariant leaves}∼



Warps and Quotients: Splitting Differences

We want metrics which care more about some directions than others or at least
measure them differently:

Warps: Metrics which split the differences nonlinearly and measure components
differently

Quotients: Metrics which split the differences nonlinearly ignore one component.



Monge-Kantorovich (MK) Warping: the idea

How to move the pile to the hole?

s

f1

K1

K2

f2

µ2

y

µ1

x

The mapping s should be injective, map K1 to K2, and satisfy the pullback
condition:

• µ2 = µ1 ◦ s−1; or

•
∫

K1
(h ◦ s)f1dx =

∫
K2

hf2dx, for all h ∈ C(K2); or

• f1 = (f2 ◦ s)|Ds|.



MK Warping: New method and results

New results obtained by Chartrand et al. use insights from convex analysis to
obtain the gradient of the cost functional directly.

Kantorovich: relaxed and dualized the problem:

After some manipulation: insights from convex analysis allow the calculation of
the derivative of the functional.

Amazingly: in the process the problem is converted from a constrained to an
unconstrained problem!



MK Warping: New method and results

Schematic illustrating the algorithm: The idea is that we start with some map s0

and evolve to find s1 transporting uσ1 to vσ1. Now move to a smaller scale σ2 and,
starting our evolution in S at s1, find s2 transporting uσ2 to vσ2. Repeat this until
we reach a fine enough resolution.
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uσ1

vσ1

uσk

vσk

uσ2
vσ2

images with σ1 smoothing

images with σk smoothing

images with σ2 smoothing

s2s1s0

sk

Space of Maps

φt = −(v − u(∇φ) det(D(∇φ))) and s = ∇φ.



Curvature warping example



Curvature warping example



CMODI: ignoring unimportant things

(for the last time(!), quotients)

Example 2 of class 1

Example 1 of class 2

Example 1 of class 1

k

N−k N

Invariant leaves    R∼

  R            R    mod {invariant leaves}∼

What we would like to do: factor out the orbits of transformations to which we
desire invariance.



CMODI: ignoring unimportant things

Test case: find images of the same person.



CMODI: ignoring unimportant things

F1τ(    , θ  )1

Σw

Σw

Σw

τ(    , θ  )2F2

G  0 0θ
I0

G  θ2

G  θ3

2

3

G  1θ1

3 F3

3τ(    , θ  )3F

µ  = τ(    ,0)

2 F2
F1 1 µ  = τ(    ,0)µ  = τ(    ,0)

How we get conditional measures which approximate the quotient space metrics.



CMODI: ignoring unimportant things

Example of shifts



CMODI: ignoring unimportant things

Results:
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Our results (the three rightmost curves) are quite good!



New directions: Geodesics and singular metric fields
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Replace M → PPTMPPT + αI then let α → 0. (P is a projection annihilating
ignored directions.)



New directions: Multiscale densities

Details on metrics and densities



New directions: Multiscale densities

Three experimentally measured images.

18 simulated images.



New directions: Multiscale densities

Sequence distances: are computed for the density sequences. These distances
are based on dynamic time warping. (In the same family of algorithms as the
Smith-Waterman and related methods for sequence similarity in the context of
genetic sequences.)

Minimizing the distances: The simulation best matching a given experimental
measurement is determined by minimizing distances. Preliminary results are very
good!



New directions: Multiscale densities

Sequence similarity of each experiment with every simulation.

Density sequences for each simulation and the closest simulation.



A look ahead: L1TV and L2TV

We will look at regularization tomorrow. In particular we will study TV regularization
and how the regularization couples with the data fidelity – L1 and L2 in particular.

1 L1TV and L2TV

2 Review of regularization.

3 Examples

4 More mathematical background

5 p-Laplacian and H1TV and L2TV

6 results using L2TV

7 L1TV, L2TV and geometric analysis

8 Summary

9 References



Outline for Thursday

Today we will finish this tutorial series with a closer look at regularization and
the interesting geometric/analytic aspects of TV regularized functionals and their
minimizers.

1 L1TV and L2TV

2 Review of regularization.

3 Examples

4 More mathematical background

5 p-Laplacian and H1TV and L2TV

6 results using L2TV

7 L1TV, L2TV and geometric analysis

8 Summary

9 References

Perspective: geometric/analytic insights provide the power needed for creating
and understanding the best image analysis methods.

My Goal: to motivate you to learn more.



L1TV and L2TV: Our focus for the day

Today we will study quite closely the following two functionals paying special
attention to the TV regularization.

min
u

F (u) =
∫
|∇u|dx + λ

∫
|u− d|2dx (16)

(
min

u
F (u) =

∫
|∇u|dx + λ

∫
|Pu− d|2dx

)

min
u

F (u) =
∫
|∇u|dx + λ

∫
|u− d|1dx (17)

But before we do this, I will review regularization and list a few examples.



Review of Regularization: the concept and pictures

Regularization can be viewed as

Method of stabilizing inverse problems: simplest point of view. But we
understand why this is reasonable by seeing regularization as

Enforcement of prior: choosing the solution that best fits what we know about
the solution;

Dimension reduction: reducing the dimension of the object we are trying to infer
or estimate from the data;

While regularization can be viewed as a stabilization procedure for inverse
problems, it is justified by the fact that this is how we can insert prior
information into the solution.

Illustration: The need for regularization in inverse problems can be seen by
looking at a very simple linear prototype: measure b̃ = b + η; now find x
given Ax = b and the fact that η is noise.

We finish the recap of regularization by looking closely at this problem.



Review of Regularization: the concept and pictures

Linear model: Given Ax = b and b̃ = b + η, find x. Assume for simplicity that A
is an N ×N invertible matrix.

Recall the SVD: A = UΣV t where Σ is a diagonal matrix with ordered, non-
negative entries and U and V are N ×N orthogonal matrices.

Express b and η in terms of the ui’s: Suppose that b = α1u1+α2u2+...+αNuN

and η = β1u1 + β2u2 + ... + βNuN .

Note: A : vi → σiui

Therefore: A−1 : αui → α
σi

vi and A−1 : (α + ε)ui → (α+ε)
σi

vi

In other words: An εui perturbation of b leads to an ε
σi

vi perturbation of x.

Conclusion: Small singular values (all interesting inverse problems are afflicted
with them!) induce instabilities into the inverse problem that must be dealt with
using regularization.



Examples

Examples of regularization terms:∫
|u|pdx : used, for example, in the tomographic reconstruction technique known
as ART for algebraic reconstruction technique (ART).∫
|∇u|pdx : The Euler-Lagrange equations → p-Laplacian.∫
|∇u|p(|∇u|)dx This term proposed by Blomgren, Chan, Mulet and Wong, has
recently been shown to have a minimizer by myself and other members of the
DDMA team. The actual functional we consider is

∫
|∇u|p(|∇Gδ?u|)dx+λ

∫
|u−

d|dx. Due to the L1 data fidelity term, there is no uniqueness. We typically
choose p(w) to be a decreasing function of w such that p(0) ≥ 2, p(w) = 1 for
w ≥ M > 0,∫
|∇u|h(x)dx This is a simplified version of the regularization introduced by
Blomgren et al. Recently Stacey Levine and collaborators have made some
very nice progress. Here h(x) is something like p(|∇Gδ ?d|), a smoothed version
of the data d plugged into p() above.

d(u, A)p: A = a submanifold learned from data. Choice of d is critical here.



Examples

SVD Projection: regularize by setting small singular values to zero and projection.
I.E. project b̃ onto the span of the ui whose corresponding singular values satisfies
σi ≥ 1. Now inversion will not magnify errors.

Mumford-Shah Segmentation: uses |∇u|2 and curve length to regularize the
solution to the segmentation problem.

min
u

F (u) =
∫

Ω\Γ
|∇u|2dx + λH1(Γ) + γ

∫
|u− d|2dx (18)

Vese-Osher Texture separation: mentioned above for it’s use of a novel data
fidelity term (metric) uses total variation regularization.

inf
u, ~G

F (u, ~G) =
∫
|∇u|dx + λ

∫
|f − u−∇ · ~G|2dx + γ||

√
~G · ~G||p (19)

where ~G = (g1, g2) and g1, g2 ∈ L∞.



Examples

Blomgren et al. denoising: as mentioned above suggests using an adaptive
exponent for |∇u|. ∫

|∇u|p(|∇u|)dx + λ

∫
|u− d|2dx (20)

Esedoglu-Osher Anisotropic denoising: looks at∫
φ(∇u)dx + λ

∫
|u− d|2dx (21)

where φ(y) is positive and 1-homogeneous.

Now we look in detail at the L2TV and L1TV functionals and their minimizers.
We begin by looking at properties of the TV seminorm and BV functions.

We begin with the question: Why choose
∫
|∇u|dx?



Background: TV functionals

Consider F (u) ≡
∫
|∇u|pdx

F (u) = sp(∆x) = (s∆x)p

(∆x)p−1 = dp(∆x)1−p

(p > 1) F (u) →
∆x→0

∞ discontinuities are avoided: smooth u preferred,

(p < 1) F (u) →
∆x→0

0 discontinuities cost nothing: step u preferred,

(p = 1) F (u) = d only jump magnitude “counts”, no bias towards smooth or step.



Background: TV functionals

How do we manipulate and understand the TV seminorm rigorously?

Radon Measures:

Define: µf(A) ≡
∫

A
fdx for any positive f in L1.

Then: fdx = dµf

What if we generalize allowable f ’s? Answer: Radon measures happen. (catch: we
only know how to generalize µ)

BV functions:

Typical gradient fields: ~dF (x) = ~σ(x)f(x), ~σ(x) a unit vector field, f(x) the

magnitude | ~dF (x)|.

Define the gradient measure µdF (A) ≡
∫

A
~σ(x)f(x)dx.

A BV function is one whose gradient measure can be written
∫

A
~σ(x)dµ where µ

is a Radon measure.



Background: TV functionals

Another approach to the definition is through a weak formulation:

If u ∈ C1(Ω) total variation of u =
∫
|∇u|dx

If u ∈ W 1,1

∫
|∇u| = sup{

∫
∇u · ~gdx for |~g| < 1, ~g ∈ C1

0(Ω; Rn)} (22)

= sup{
∫

udiv~gdx for |~g| < 1, ~g ∈ C1
0(Ω; Rn)} (23)

makes sense.

Finally for u ∈ L1(Ω), we use the last equation to define
∫
|∇u|dx



Background: TV functionals

Suppose u is a characteristic function of a set Ω? Can we see what TV(u) will be?

Ω

0

1

Using the figure of an approximate characteristic function, we can convince ourselves
that TV(u) is simply the length of the boundary of the set Ω.



Background: TV functionals

Suppose Ω is really wild? The “argument” above depended on Ω being nice. What
can we conclude about TV(χΩ) in this case?

Without out going into all the gory details, there is a set ∂∗Ω called reduced
boundary of Ω that coincides with the boundary that test functions can see.
TV(χΩ) picks up the boundary that integration against smooth test functions
“sees”.



An aside: ∞-Laplacian

Let’s look a little more closely at the regularization term:∫
|∇u|pdx. (24)

Computing the derivative and setting it equal to zero we get the p-Laplacian:

∇ ·
(
|∇u|p−2∇u

)
= 0 (25)

Checking for the case of p = 2 we see that indeed, in agreement with our calculation
on Tuesday,

∫
|∇u|p → ∇ · (∇u) = ∆u.

This term works for 1 < p < ∞. The cases p = 1 and p = ∞ being boundary
cases, are quite interesting. Of course the first case, p = 1 is the case we are
looking at in more detail today.

What about p = ∞?



An aside: ∞-Laplacian

The ∞-Laplacian is a very intriguing and challenging nonlinear PDE that still holds
forth challenges to the analyst.

One way to interpret the limit as p →∞ of ∇·
(
|∇u|p−2∇u

)
= 0 is to notice that:

min
u

∫
Ω

|∇u|pdx = min
u

(∫
Ω

|∇u|pdx

)1
p

= min
u
||∇u||p (26)

where of course we are specifying u = f on ∂Ω.

An absolutely minimizing function f : Ω → R is an optimal Lipschitz extension to
the interior of Ω of the boundary data f(∂Ω). Optimality has a sensible definition
(see notes at the end of the tutorial). Absolutely minimizing functions can be
viewed as the correct way of interpreting the solutions to the ∞-Laplacian.



An aside: ∞-Laplacian

Ω

f
For more details see the article by Aronsson, Crandall and Juutinen in the October
2004 American Mathematical Society Bulletin and articles on L. Craig Evans website
(Berkeley). Finally, it has been used to do inpainting by Caselles, Morel, and Sbert.

Cool fact: the Iζζ that Ron Kimmel talked about before lunch is the ∞-Laplacian!
(Pointed out by Craig Evans after the talk.)



Example of L2TV in action: BCO4

The multiple view test object: a proton radiograph from one of 30 viewing angles.
The data was collected at the Los Alamos Neutron Science Center (LANSCE) in
the proton radiography facility.



Example of L2TV in action: BCO4

BCO4 reconstructed using SVD regularization



Example of L2TV in action: BCO4

BCO4 reconstructed using TV regularization



Properties of L1TV

Moving now to the TV regularized functional with L1 data fidelity,

F (u) ≡
∫
|∇u|dx + λ

∫
|u− d|dx (27)

Not strictly convex: F (u) is not strictly convex ⇒ we do not have uniqueness!

Homogeneity: u is a minimizer for d → Cu is a minimizer for Cd

Existence: Since TV (u) is lower semi-continuous in L1, F (u) is convex and
coercive.



Properties of L1TV

u = χΣ and d = χΩ ⇒ F (Σ) ≡ F (χΣ) = Per(Σ) + λ|Σ∆Ω|

• u = χΣ →
∫
|∇u|dx = perimeter of Σ

• u = χΣ, d = χΩ → λ
∫
|u− d|dx = λ

∫
|χΣ − χΩ|dx = λArea(Σ M Ω)

Σ

Ω

0

1



Results for L1TV

We now look at results appearing in papers by Chan and Esedoglu, Esedoglu and
Vixie, and Allard.

d = χΩ ⇒ u = χΣ, for some Σ, is a minimizer.

Non-convex minimizations of F (Σ) = Per(Σ) + λ|Σ∆Ω| can be relaxed to F (u) ≡∫
|∇u|dx + λ

∫
|u− χΩ|dx (convex). Now suppose – due to the non-uniqueness –

u, the minimizer we find, is not a characteristic function? Use:

If u is any minimizer of Fλ(u) then for almost all µ ∈ [0, 1],
χ{x:u>µ} is also a minimizer of Fλ(u),

to get a minimizer that is a characteristic function.



Results for L1TV

If Ω = B2
λ

then u = αχB2
λ

is a minimizer for any α ∈ [0, 1].

One can therefore concoct Ω’s whose solutions Σ(λ) have, as λ → ∞, an infinite
number of non-uniqueness points ...

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �

� �
� �
� �

� �	


�

...



Results for L1TV

B2
λ
⊂ Ω → B2

λ
⊂ Σ: Consequence – for the L1TV functional, edges are

perfectly preserved if they can be touched by 2
λ balls in and out.

Theorem 1. If Br ⊂ Ω where r ≥ 2
λ, then Br ⊂ Σ.

In particular, we can conclude that the boundary of Σ is in the envelope between
inside and outside 2

λ balls.
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Results for L1TV
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1
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E(Σ ∪Br)− E(Σ) = (Per(Br)− λ|Br|) + (λ|Br ∩ Σ| − Per(Br ∩ Σ))(28)

=
(

2πr − 2
R

πr2

)
+
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2
R

πρ2 − 2πρ∗
)

(29)

= 2πr(1− r

R
) + 2πρ(

ρ

R
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ρ
) (30)

What about the case in which the 2
λ ball is almost included in Ω?



Results for L1TV

Denoising shapes: almost 2
λ means slightly smaller included

Theorem 2: B2
λ
⊂
∼

Ω → B2
λ−ε ⊂ Σ
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) + 2λ|Br \ Ω| (31)



Results for L1TV

Higher order results: Allard’s formula from a first variation

H(x) = −λγ′(y − d(x))nE(x) for x ∈ M (32)

where E ≡ {x|u(x) ≥ y} and γ(w) = |w| or |w|2.

Where does this handy curvature formula come from?



Results for L1TV

Theorem: For any y ∈ J and any X ∈ X (Ω) we have
(I)

∫
Ω
(1
λa1 + b1)(x, y) d||∂[{u ≥ y}]||x = 0

and
(II)

∫
Ω
(1
λa2 + b2)(x, y) d||∂[{u ≥ y}]||x ≥ 0

where

P (x) equals orthogonal projection on {v ∈ Rn : v • n{u≥y}(x) = 0}
t(x) = P (x) ◦ ∂X(x) ◦ P (x)

h(x) = P (x)⊥ ◦ ∂X(x) ◦ P (x)

a1(x) = trace t(x)

a2(x) = (trace t(x))2 + trace (h(x)∗ ◦ h(x)− t(x)2)

l(x) = γ′(y − d(x))

k(x) = γ′′(y − d(x))

v(x) = div X(x)X(x)− ∂X(x)(X(x))

w(x) = ∇d(x) •X(x)X(x)

b1(x) = l(x)X(x) • n{u≥y}(x)

b2(x) =
`
l(x)v(x)− k(x)w(x))

´
• n{f≥y}(x).

The second variation limits the size of an arc of Σ boundary to < π radians!



Summary of Tutorial

There is much more to say of course, but I will stop here. After all:

The secret to wearying consists in saying everything

Voltaire

Metrics: difference measures between images should be designed with the goal
in mind. In particular what is needed are metrics which ignore unimportant
differences. These metrics can be learned – at least in part – from data.

Regularization: Using what we know or are willing to assume – prior models – we
can improve results of many image analysis methods. In fact, this regularization
of solutions is critical for any sort of sensible answer in many cases.

Geometric Analysis: the power of analysis and geometric analysis for the purposes
of innovation and insights in image analysis should not be underestimated.

Caution: Image analysis and processing 6= mathematics. Anyone who wants to
do the best work should be able to wear an engineer’s or scientist’s hat and be
willing to sustain a connection to real data and real problems. The mathematics
generated will be greatly enriched by such a perspective and practice.
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Notes: for online version of slides

1: These notes are meant to help those who are reading the slides and did not see
the talks. In particular, I will add a few comments about details over the next
week or so.

2: Page 7: On this slide, I refer to λ as a Lagrange multiplier. The reason for this
is that some have considered this functional to arise from minimization of the
TV seminorm under the constraint that the data fidelity residual equaled some
fixed value. Otherwise, this parameter really simply a balance between the two
terms.

3: Page 8: On the Abel projection operator, see papers on the TV Abel inversions
at http://ddma.lanl.gov/public/publications/.

4: Page 15: In finite dimensions, there is no problem defining the probability
densities referred to in the slide. In infinite dimensions we have to be much more
careful.
Suggestive explanation: we know the volume of a ball with radius r in an
n-dimensional Euclidean space is Vn(r) ≡ α(n)rn where α(n) is the volume of
the n-dimensional unit ball (1-ball). Now set α(∞) = 1 so that V∞(1) = 1.

http://ddma.lanl.gov/public/publications/


Notes: for online version of slides

Taking a limit as n →∞, we expect

V∞(r) =

 ∞ if r > 1,
1 if r = 1
0 if r < 1

 (33)

This suggests that as n →∞, a uniform distribution will have all of it’s mass or
measure concentrated on the surface of the closed ball. While this is an accurate
intuitive picture for the phenomena of concentration of measure, it also tells us
that we will have a problem defining something as innocuous as the uniform
distribution on the closed 1-ball.
In more detail: Let’s try to define the uniform distribution on the closed 1-ball in
a separable infinite dimensional Hilbert space. Let the probability of the closed
ball of radius 0 < γ < 1

4 (γ-ball) be ε > 0. Let Bi = B((1−γ)ei, γ) ≡ the γ-ball
centered at (1 − γ)ei), where the ei are the orthonormal unit vectors. The Bi

are a countably infinite family of disjoint, closed γ-balls contained in the closed
1-ball. Since we want the measure of the 1-ball to equal 1, we need

∑
i Bi ≤ 1.

This is only possible if ε = 0. But then, by using a different countable set of
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closed γ-balls to cover the closed 1-ball, we see that the measure of the closed
1-ball equals 0.

5: Page 18: Stability here refers to theoretical stability. There are also separate
issues of numerical stability.

6: Page 70: Gδ is a smooth symmetric mollifier with support of radius δ.

7: Page 79: Define LipA(f) to be the Lipschitz constant for f in the set A:

LipA(f) = sup
x,y∈A and x6=y

|f(x)− f(y)|
|x− y|

. (34)

An absolutely minimizing function f : Ω → R is a function that

1: continuously extends the boundary data f(∂Ω) to the interior of Ω without
increasing the Lipschitz constant: LipΩ(f) = Lip∂Ω(f) and

2: for any V ⊂⊂ Ω, LipV (f) = Lip∂V (f).

MORE: I will add more notes ...


